Suplementação de ômega-3 no transtorno bipolar: estudos sobre os possíveis benefícios

  • Bozzatello P, Brignolo E, De Grandi E, Bellino S. Supplementation with Omega-3 Fatty Acids in Psychiatric Disorders: A Review of Literature Data. J Clin Med. 2016 Jul 27;5(8):67. doi: 10.3390/jcm5080067. PMID: 27472373; PMCID: PMC4999787.
  • Bozzatello, Rocca, Mantelli, Bellino. Polyunsaturated Fatty Acids: What is Their Role in Treatment of Psychiatric Disorders? International Journal of Molecular Sciences [Internet] 2019;20(21):5257. Available from:
  • Nasir M, Bloch MH. Trim the fat: the role of omega-3 fatty acids in psychopharmacology. Ther Adv Psychopharmacol. 2019 Aug 27;9:2045125319869791. doi: 10.1177/2045125319869791. PMID: 31489174; PMCID: PMC6713969.
  • Bozzatello P, De Rosa ML, Rocca P, Bellino S. Effects of Omega 3 Fatty Acids on Main Dimensions of Psychopathology. Int J Mol Sci. 2020 Aug 21;21(17):6042. doi: 10.3390/ijms21176042. PMID: 32839416; PMCID: PMC7504659.
  • Lima JF. Nutrição no tratamento de transtorno bipolar: revisão sistemática. Revista Saúde e Desenvolvimento [Internet]. 2020 Dec 17 [cited 2022 Sep 29];14(19). Available from:
  • Shakeri J, Khanegi M, Golshani S, Farnia V, Tatari F, Alikhani M, Nooripour R, Ghezelbash MS. Effects of Omega-3 Supplement in the Treatment of Patients with Bipolar I Disorder. Int J Prev Med. 2016 May 19;7:77. doi: 10.4103/2008-7802.182734. PMID: 27280013; PMCID: PMC4882968.
  • Riveros ME, Retamal MA. Are Polyunsaturated Fatty Acids Implicated in Histaminergic Dysregulation in Bipolar Disorder?: AN HYPOTHESIS. Front Physiol. 2018 Jun 12;9:693. doi: 10.3389/fphys.2018.00693. PMID: 29946266; PMCID: PMC6005883.

Sibo: sinais, sintomas e terapia nutricional

  • Achufusi TGO, Sharma A, Zamora EA, Manocha D. Small Intestinal Bacterial Overgrowth: Comprehensive Review of Diagnosis, Prevention, and Treatment Methods. 2020 Jun 27;12(6):e8860. doi: 10.7759/cureus.8860. PMID: 32754400; PMCID: PMC7386065.
  • Lauritano EC, Gabrielli M, Scarpellini E, Lupascu A, Novi M, Sottili S, Vitale G, Cesario V, Serricchio M, Cammarota G, Gasbarrini G, Gasbarrini A. Small intestinal bacterial overgrowth recurrence after antibiotic therapy. Am J Gastroenterol. 2008 Aug;103(8):2031-5. doi: 10.1111/j.1572-0241.2008.02030.x. PMID: 18802998.
  • Leventogiannis K, Gkolfakis P, Spithakis G, Tsatali A, Pistiki A, Sioulas A, Giamarellos-Bourboulis EJ, Triantafyllou K. Effect of a Preparation of Four Probiotics on Symptoms of Patients with Irritable Bowel Syndrome: Association with Intestinal Bacterial Overgrowth. Probiotics Antimicrob Proteins. 2019 Jun;11(2):627-634. doi: 10.1007/s12602-018-9401-3. Erratum in: Probiotics Antimicrob Proteins. 2018 Mar 28;: PMID: 29508268; PMCID: PMC6541575.
  • Mitten, Emilie MD; Goldin, Alison MD, MPH; Hanifi, Jasmine MD; Chan, Walter W. MD, MPH. Recent Probiotic Use Is Independently Associated With Methane-Positive Breath Test for Small Intestinal Bacterial Overgrowth: 1151. American Journal of Gastroenterology: October 2018 – Volume 113 – Issue – p S660
  • Rao SSC, Rehman A, Yu S, Andino NM. Brain fogginess, gas and bloating: a link between SIBO, probiotics and metabolic acidosis. Clin Transl Gastroenterol. 2018 Jun 19;9(6):162. doi: 10.1038/s41424-018-0030-7. PMID: 29915215; PMCID: PMC6006167.
  • Rosania R, Giorgio F, Principi M, Amoruso A, Monno R, Di Leo A, Ierardi E. Effect of probiotic or prebiotic supplementation on antibiotic therapy in the small intestinal bacterial overgrowth: a comparative evaluation. Curr Clin Pharmacol. 2013 May;8(2):169-72. doi: 10.2174/15748847113089990048. PMID: 23244247.
  • Saffouri GB, Shields-Cutler RR, Chen J, Yang Y, Lekatz HR, Hale VL, Cho JM, Battaglioli EJ, Bhattarai Y, Thompson KJ, Kalari KK, Behera G, Berry JC, Peters SA, Patel R, Schuetz AN, Faith JJ, Camilleri M, Sonnenburg JL, Farrugia G, Swann JR, Grover M, Knights D, Kashyap PC. Small intestinal microbial dysbiosis underlies symptoms associated with functional gastrointestinal disorders. Nat Commun. 2019 May 1;10(1):2012. doi: 10.1038/s41467-019-09964-7. PMID: 31043597; PMCID: PMC6494866.
  • Sakkas H, Bozidis P, Touzios C, Kolios D, Athanasiou G, Athanasopoulou E, Gerou I, Gartzonika C. Nutritional Status and the Influence of the Vegan Diet on the Gut Microbiota and Human Health. Medicina (Kaunas). 2020 Feb 22;56(2):88. doi: 10.3390/medicina56020088. PMID: 32098430; PMCID: PMC7073751.
  • Skrzydło-Radomańska B, Cukrowska B. How to Recognize and Treat Small Intestinal Bacterial Overgrowth? J Clin Med. 2022 Oct 12;11(20):6017. doi: 10.3390/jcm11206017. PMID: 36294338; PMCID: PMC9604644.
  • Wielgosz-Grochowska, J.P.; Domanski, N.; Drywie ´n, M.E. Efficacy of an Irritable Bowel Syndrome Diet in the Treatment of Small Intestinal Bacterial Overgrowth: A Narrative Review. Nutrients 2022, 14, 3382. nu14163382
  • Zimmer, J., Lange, B., Frick, JS. et al.A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr66, 53–60 (2012).

Envelhecimento e microbiota intestinal

  • BANA, Bianca; CABREIRO, Filipe. The microbiome and aging. Annual review of genetics, v. 53, p. 239-261, 2019.
  • GARCÍA-PEÑA, Carmen et al. Microbiota and aging. A review and commentary. Archives of medical research, v. 48, n. 8, p. 681-689, 2017.
  • Badal VD, Vaccariello ED, Murray ER, Yu KE, Knight R, Jeste DV, Nguyen TT. The Gut Microbiome, Aging, and Longevity: A Systematic Review. Nutrients. 2020 Dec 7;12(12):3759. doi: 10.3390/nu12123759. PMID: 33297486; PMCID: PMC7762384.
  • CӐTOI, Adriana Florinela et al. Gut microbiota and aging-A focus on centenarians. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, v. 1866, n. 7, p. 165765, 2020.
  • CONWAY, Jessica; DUGGAL, Niharika A. Ageing of the gut microbiome: Potential influences on immune senescence and inflammageing. Ageing Research Reviews, v. 68, p. 101323, 2021.
  • MILLER, Larry E.; LEHTORANTA, Liisa; LEHTINEN, Markus J. Short-term probiotic supplementation enhances cellular immune function in healthy elderly: systematic review and meta-analysis of controlled studies. Nutrition research, v. 64, p. 1-8, 2019.
  • Nagpal R, Mainali R, Ahmadi S, Wang S, Singh R, Kavanagh K, Kitzman DW, Kushugulova A, Marotta F, Yadav H. Gut microbiome and aging: Physiological and mechanistic insights. Nutr Healthy Aging. 2018 Jun 15;4(4):267-285. doi: 10.3233/NHA-170030. PMID: 29951588; PMCID: PMC6004897.
  • Maffei VJ, Kim S, Blanchard E 4th, Luo M, Jazwinski SM, Taylor CM, Welsh DA. Biological Aging and the Human Gut Microbiota. J Gerontol A Biol Sci Med Sci. 2017 Oct 12;72(11):1474-1482. doi: 10.1093/gerona/glx042. PMID: 28444190; PMCID: PMC5861892.

Benefícios do azeite de oliva

  • Romani, A., et. Al., Health Effects of Phenolic Compounds Found in Extra-Virgin Olive Oil, By-Products, and Leaf of Olea europaea L., Nutrients, 2019
  •  Millman, J., et.Al., Extra-virgin olive oil and the gut-brain axis: influence on gut microbiota, mucosal immunity, and cardiometabolic and cognitive health ,Nutr Rev., 2021
  •  Davis, C., et Al., Definition of the Mediterranean Diet: A Literature Review, Nutrients, 2015
  •  Khaw, K., Randomised trial of coconut oil, olive oil or butter on blood lipids and other cardiovascular risk factors in healthy men and women, BMJ Open, 2018
  •  Lopes, S., et Al., Bioactive Compounds and Quality of Extra Virgin Olive Oil, Foods, 2020 
  • González, M., Benefits of the Mediterranean Diet: Insights From the PREDIMED Study, Prog Cardiovasc Dis, 2015
  • Sokala, K., et.Al., The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders, Pharmacological Research, 2021
  • Finicelli, M., et. Al.,The Mediterranean Diet: An Update of the Clinical Trials, Nutrients, 2022
  • Carvenale, R., et. Al., Extra virgin olive oil improves post-prandial glycemic and lipid profile in patients with impaired fasting glucose, Clinical Nutrition, 2017
  • Paniagua, J., et. Al., A MUFA-rich diet improves posprandial glucose, lipid and GLP-1 responses in insulin-resistant subjects, J Am Coll Nutr, 2007
  • Mazzocchi, A., et. Al, The Secrets of the Mediterranean Diet. Does [Only] Olive Oil Matter?, Nutrients, 2019
  • Millman, et. Al., Metabolically and immunologically beneficial impact of extra virgin olive and flaxseed oils on composition of gut microbiota in mice, Eur J Nutr, 2020
  • Lauretti, E., et Al., Extra virgin olive oil improves synaptic activity, short‐term plasticity, memory, and neuropathology in a tauopathy model, Aging Cell, 2020
  • Psaltopoulou, T., et. Al., Olive oil intake is inversely related to cancer prevalence: a systematic review and a meta-analysis of 13,800 patients and 23,340 controls in 19 observational studies, Lipids Health Dis., 2011
  • Emma, M., et. Al., Potential Uses of Olive Oil Secoiridoids for the Prevention and Treatment of Cancer: A Narrative Review of Preclinical Studies, Int J Mol Sci., 2021
  • Serreli, G., Deiana, M., Extra Virgin Olive Oil Polyphenols: Modulation of Cellular Pathways Related to Oxidant Species and Inflammation in Aging, Cells, 2020

Suplementação proteica e sarcopenia

  • 1 Paddon-Jones, D.; Rasmussen, B.B. Dietary protein recommendations and the prevention of sarcopenia: Protein, amino acid metabolism and therapy. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 86. [CrossRef] [PubMed]

    2 Lexell, J.; Taylor, C.C.; Sjöström, M. What is the cause of the ageing atrophy?: Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15-to 83-year-old men. J. Neurol. Sci. 1988, 84, 275–294. [CrossRef]

    3 Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [CrossRef]

    4 Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; van Kan, G.A.; Andrieu, S.; Bauer, J.; Breuille, D.; et al. Sarcopenia: An Undiagnosed Condition in Older Adults. Current Consensus Definition: Prevalence, Etiology, and Consequences. International Working Group on Sarcopenia. J. Am. Med. Dir. Assoc. 2011, 12, 249–256. [CrossRef]

    5 Shafiee, G.; Keshtkar, A.; Soltani, A.; Ahadi, Z.; Larijani, B.; Heshmat, R. Prevalence of sarcopenia in the world: A systematic review and meta-analysis of general population studies. J. Diabetes Metab. Disord. 2017, 16, 21. [CrossRef]

    6 Deutz, N.E.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphal, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznariç, Z.; Nair, K.S. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Group. Clin. Nutr. 2014, 33, 929–936. [CrossRef]

    7 Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-Based Recommendations for Optimal Dietary Protein Intake in Older People: A Position Paper From the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [CrossRef] [PubMed]

    8 Morley, J.E.; Argiles, J.M.; Evans, W.J.; Bhasin, S.; Cella, D.; Deutz, N.E.; Doehner, W.; Fearon, K.C.; Ferrucci, L.; Hellerstein, M.K.; et al. Nutritional recommendations for the management of sarcopenia. J. Am. Med. Dir. Assoc. 2010, 11, 391–396. [CrossRef] [PubMed]

    9 Volek, J.S.; Volk, B.M.; Gómez, A.L.; Kunces, L.J.; Kupchak, B.R.; Freidenreich, D.J.; Aristizabal, J.C.; Saenz, C.; Dunn-Lewis, C.; Ballard, K.D. Whey protein supplementation during resistance training augments lean body mass. J. Am. Coll. Nutr. 2013, 32, 122–135. [CrossRef]

    10 Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; van Loon, L.J.C. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 2018, 50, 1685–1695. [CrossRef]

    11 Maykish, A.; Sikalidis, A.K. Utilization of Hydroxyl-Methyl Butyrate, Leucine, Glutamine and Arginine Supplementation in Nutritional Management of Sarcopenia—Implications and Clinical Considerations for Type 2 Diabetes Mellitus Risk Modulation. J. Pers. Med. 2020, 10, 19. [CrossRef] [PubMed]

    12 Del Favero, S.; Roschel, H.; Solis, M.Y.; Hayashi, A.P.; Artioli, G.G.; Otaduy, M.C.; Benatti, F.B.; Harris, R.C.; Wise, J.A.; Leite, C.C. Beta-alanine (Carnosyn™) supplementation in elderly subjects (60–80 years): Effects on muscle carnosine content and physical capacity. Amino Acids 2012, 43, 49–56. [CrossRef]

    13 McCormack, W.P.; Stout, J.R.; Emerson, N.S.; Scanlon, T.C.; Warren, A.M.; Wells, A.J.; Gonzalez, A.M.; Mangine, G.T.; Robinson IV, E.H.; Fragala, M.S. Oral nutritional supplement fortified with beta-alanine improves physical working capacity in older adults: A randomized, placebo-controlled study. Exp. Gerontol. 2013, 48, 933–939. [CrossRef] [PubMed]

    14 Stout, J.R.; Graves, B.S.; Smith, A.E.; Hartman, M.J.; Cramer, J.T.; Beck, T.W.; Harris, R.C. The effect of beta-alanine supplementation on neuromuscular fatigue in elderly (55–92 years): A double-blind randomized study. J. Int. Soc. Sports Nutr. 2008, 5, 1–6. [CrossRef] [PubMed]

    15 Furst, T.; Massaro, A.; Miller, C.; Williams, B.T.; LaMacchia, Z.M.; Horvath, P.J. β-Alanine supplementation increased physical performance and improved executive function following endurance exercise in middle aged individuals. J. Int. Soc. Sports Nutr. 2018, 15, 1–8. [CrossRef]

    16 Lattimer, J.M.; Haub, M.D. Effects of dietary fiber and its components on metabolic health. Nutrients 2010, 2, 1266–1289. [CrossRef] [PubMed]

    17 Van Vliet, S.; Burd, N.A.; van Loon, L.J. The skeletal muscle anabolic response to plant-versus animal-based protein consumption. J. Nutr. 2015, 145, 1981–1991. [CrossRef]

    18 Brennan, J.L.; Keerati-U-Rai, M.; Yin, H.; Daoust, J.; Nonnotte, E.; Quinquis, L.; St-Denis, T.; Bolster, D.R. Differential Responses of Blood Essential Amino Acid Levels Following Ingestion of High-Quality Plant-Based Protein Blends Compared to Whey Protein—A Double-Blind Randomized, Cross-Over, Clinical Trial. Nutrients 2019, 11, 2987. [CrossRef] [PubMed]

    19 Putra, C.; Konow, N.; Gage, M.; York, C.G.; Mangano, K.M. Protein Source and Muscle Health in Older Adults: A Literature Review. Nutrients 2021, 13, 743. https://

Creatina e saúde feminina

    2. Gualano, B., Roschel, H., Lancha-Jr., AH et ai. Na doença e na saúde: a ampla aplicação da suplementação de creatina. Aminoácidos 43, 519-529 (2012).
    3. Vellas, B., et al. Implications of ICD-10 for sarcopenia clinical practice and clinical trials: report by the international conference on frailty and sarcopenia research task force. The Journal of Frailty & Aging, v. 7, n. 1, p. 2-9, 2018.
    4. Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Ações Programáticas Estratégicas. Manual de Atenção à Mulher no Climatério/Menopausa / Ministério da Saúde, Secretaria de Atenção à Saúde, Departamento de Ações Programáticas Estratégicas. – Brasília : Editora do Ministério da Saúde, 2008. P. 192.
    5. Marzetti, E, et al. Sarcopenia: an overview. Aging Clinical and Experimental Research, v. 29, n. 1, p. 11-17, 2017.
    6. Ireland, Z., Dickinson, H., Snow, R., & Walker, D. W. (2008). Maternal creatine: does it reach the fetus and improve survival after an acute hypoxic episode in the spiny mouse (Acomys cahirinus)? American Journal of Obstetrics and Gynecology, 198(4), 431.e1–431.e6.
    7. Miller, R.K., et al. (1977). Creatine transport by rat placentas. The American Journal of Physiology, 233(4), E308–E315.
    8. Adcock KH, ET AL. Neuroproteção da suplementação de creatina em ratos neonatais com hipoxia-isquemia cerebral transitória. Dev Neurosci, 2002.
    9. Santos, João Pedro Cardozo; et al. O uso da creatina no treinamento de força e na melhoria do desempenho físico. Research, Society and Development, v. 10, n. 11, e59101119410, 2021.
    10. Hespel P, Derave W. Ergogenic effects of creatine in sports and rehabilitation. Subcell Biochem. 2007;46:245-259.
    11. Safdar A, et al. Global and targeted gene expression and protein content in skeletal muscle of young men following short-term creatine monohydrate supplementation. Physiol Genomics. 2008;32(2):219-228.

Suplementação infantil

  • SPSP | Sociedade de Pediatria de São Paulo. Out. 2019b. Disponível em: Acesso em: 2 out. 2022.
  • Chefe E, Dra P, Marques M, Suen, Durval R, Filho, et al. Anais do Congresso International Journal of Nutrology [Internet]. [cited 2022 Oct 1]. Available from:
  • BASES bioquímicas e fisiológicas da Nutrição : nas diferentes fases da vida, na saúde e na doença. Barueri – SP: Manole, 2013. ISBN 978-85-204-3177-1.
  • Cristine M. Trahms; MS, RD, CD, FADA, Kelly N. McKean, MS, RD, CD. Nutrição no Estágio Inicial da Infância. In: Krause, Alimentos, Nutrição e Dietoterapia. 13. ed. Rio de Janeiro: Elsevier, 2012. p. 379. ISBN 978-1-4377-2233-8.
  • MARIA FRACISCATO COZZOLINO, Silvia; COMINETTI, Cristiane. Bases bioquímicas e fisiológicas da Nutrição : nas diferentes fases da vida, na saúde e na doença. Barueri – SP: Manole, 2013. 666 p. ISBN 978-85-204-3177-1.
  • TANNENBAUM, G.S. (1991), Neuroendocrine Control of Growth Hormone Secretion. Acta Pædiatrica, 80: 5-16.
  • FRANCISCATO COZZOLINO, Silvia. Biodisponibilidade de nutrientes. 5. ed. Barueri – SP: Manole, 2020. 1443 p. ISBN 978-85-204-4136-7.
  • CHENG, Yu-Shian et al. Supplementation of omega 3 fatty acids may improve hyperactivity, lethargy, and stereotypy in children with autism spectrum disorders: A meta-analysis of randomized controlled trials. Neuropsychiatric disease and treatment, v. 13, p. 2531, 2017.

Carboidratos & musculação

  • [1] Cermak NM, van Loon LJ. The use of carbohydrates during exercise as an ergogenic aid. Sports Med. 2013 Nov;43(11):1139-55. doi: 10.1007/s40279-013-0079-0. PMID: 23846824.
  • [2] Kerksick, C.M., Wilborn, C.D., Roberts, M.D. et al. ISSN exercise & sports nutrition review update: research & recommendations. J Int Soc Sports Nutr 15, 38 (2018).
  • [3] Kerksick, CM, Arent, S., Schoenfeld, BJ et al. Posição da Sociedade Internacional de Nutrição Esportiva: sincronismo dos nutrientes. J Int Soc Sports Nutr 14, 33 (2017).
  • [4] Warren GL, Park ND, Maresca RD, McKibans KI, Millard-Stafford ML. Effect of caffeine ingestion on muscular strength and endurance: a meta-analysis. Med Sci Sports Exerc. 2010 Jul;42(7):1375-87. doi: 10.1249/MSS.0b013e3181cabbd8. PMID: 20019636.
  • [5] Jentjens R, Jeukendrup A. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Med. 2003;33(2):117-44. doi: 10.2165/00007256-200333020-00004. PMID: 12617691.
  • [6] Burke LM. Energy needs of athletes. Can J Appl Physiol. 2001;26 Suppl:S202-19. doi: 10.1139/h2001-055. PMID: 11897896.

Spirulina Azul

  1. Cingi, Cemal et al. “The effects of spirulina on allergic rhinitis.” European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology – Head and Neck Surgery vol. 265,10 (2008): 1219-23. doi:10.1007/s00405-008-0642-8
  2. DiNicolantonio, James J et al. “Effects of spirulina on weight loss and blood lipids: a review.” Open heart vol. 7,1 e001003. 8 Mar. 2020, doi:10.1136/openhrt-2018-001003
  3. Kim WY, Kim MH. The change of lipid metabolism and immune function caused by antioxidant material in the hypercholesterolemic elderly women in Korea. Korean J Nutr 2005;38:67–75.
  4. Nakaya N, Homma Y, Goto Y. Cholesterol lowering effect of spirulina. Nutrition reports international 1988;37:1329–37
  5. Naeini, Fatemeh et al. “Spirulina supplementation as an adjuvant therapy in enhancement of antioxidant capacity: A systematic review and meta-analysis of controlled clinical trials.” International journal of clinical practice vol. 75,10 (2021): e14618. doi:10.1111/ijcp.14618
  6. Park HJ, Lee YJ, Ryu HK, et al. A randomized double-blind, placebocontrolled study to establish the effects of spirulina in elderly Koreans. Ann Nutr Metab 2008;52:322–8.
  7. “Spirulina.” LiverTox: Clinical and Research Information on Drug-Induced Liver Injury, National Institute of Diabetes and Digestive and Kidney Diseases, 10 April 2019.
  8. “Spirulina.” Drugs and Lactation Database (LactMed), National Library of Medicine (US), 21 June 2021.
  9. Tajvidi, Elham et al. “Study the antioxidant effects of blue-green algae Spirulina extract on ROS and MDA production in human lung cancer cells.” Biochemistry and biophysics reports vol. 28 101139. 21 Sep. 2021, doi:10.1016/j.bbrep.2021.101139

Quero receber os próximos lançamentos da revista

Preencha o formulário abaixo para ter acesso a mais informações